The evolution of parasite virulence and transmission rate in a spatially structured population.

نویسندگان

  • Y Haraguchi
  • A Sasaki
چکیده

If the transmission occurs through local contact of the individuals in a spatially structured population, the evolutionarily stable (ESS) traits of parasite might be quite different from what the classical theory with complete mixing predicts. In this paper, we theoretically study the ESS virulence and transmission rate of a parasite in a lattice-structured host population, in which the host can send progeny only to its neighboring vacant site, and the transmission occurs only in between the infected and the susceptible in the nearest-neighbor sites. Infected host is assumed to be infertile. The analysis based on the pair approximation and the Monte Carlo simulation reveal that the ESS transmission rate and virulence in a lattice-structured population are greatly reduced from those in completely mixing population. Unlike completely mixing populations, the spread of parasite can drive the host to extinction, because the local density of the susceptible next to the infected can remain high even when the global density of host becomes very low. This demographic viscosity and group selection between self-organized spatial clusters of host individuals then leads to an intermediate ESS transmission rate even if there is no tradeoff between transmission rate and virulence. The ESS transmission rate is below the region of parasite-driven extinction by a finite amount for moderately large reproductive rate of host; whereas, the evolution of transmission rate leads to the fade out of parasite for small reproductive rate, and the extinction of host for very large reproductive rate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fast-killing parasites can be favoured in spatially structured populations

It is becoming increasingly clear that the evolution of infectious disease is influenced by host population structure. Theory predicts that parasites should be more 'prudent'-less transmissible-in spatially structured host populations. However, here we (i) highlight how low transmission, the phenotype being selected for in this in context, may also be achieved by rapacious host exploitation, if...

متن کامل

Spatial evolutionary epidemiology of spreading epidemics.

Most spatial models of host-parasite interactions either neglect the possibility of pathogen evolution or consider that this process is slow enough for epidemiological dynamics to reach an equilibrium on a fast timescale. Here, we propose a novel approach to jointly model the epidemiological and evolutionary dynamics of spatially structured host and pathogen populations. Starting from a multi-s...

متن کامل

Spatially structured superinfection and the evolution of disease virulence.

When pathogen strains differing in virulence compete for hosts, spatial structuring of disease transmission can govern both evolved levels of virulence and patterns in strain coexistence. We develop a spatially detailed model of superinfection, a form of contest competition between pathogen strains; the probability of superinfection depends explicitly on the difference in levels of virulence. W...

متن کامل

Host growth conditions influence experimental evolution of life history and virulence of a parasite with vertical and horizontal transmission.

In parasites with mixed modes of transmission, ecological conditions may determine the relative importance of vertical and horizontal transmission for parasite fitness. This may lead to differential selection pressure on the efficiency of the two modes of transmission and on parasite virulence. In populations with high birth rates, increased opportunities for vertical transmission may select fo...

متن کامل

Virulence in rodent malaria: host genotype by parasite genotype interactions.

In an effort to understand what limits the virulence of malaria parasites, we infected inbred mice of three genotypes (C57Bl/6J, CBA/Ca and DBA/2) with one of two parasite lines of the rodent malaria Plasmodium chabaudi. One of these parasite lines had been serially passaged through C57Bl/6J mice and had evolved higher asexual growth rate, virulence and transmission in the process. The other pa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of theoretical biology

دوره 203 2  شماره 

صفحات  -

تاریخ انتشار 2000